Una ecuación de primer grado o ecuación lineal es una igualdad algebraica cuya potencia es equivalente a uno, pudiendo contener una, dos o más incógnitas. Siendo a ≠ 0. Es decir, ‘a’ no es cero. ‘b’ y ‘c’ son dos constantes.
Índice
- Ecuación de primer grado
- En general para resolver una ecuación de primer grado debemos seguir los siguientes pasos:
- ¿Qué es una ecuación de primer grado y de segundo?
- ¿Qué es una ecuación de primer grado con una incógnita?
- Cómo se resuelve una ecuación de primer grado
- ¿Qué son ecuaciones y 5 ejemplos?
- ¿Cuáles son los 3 tipos de ecuaciones?
- ¿Qué tipos de ecuaciones hay ejemplos?
- ¿Cómo se resuelve la ecuación?
- ¿Cómo se resuelve una ecuación de una incógnita de primer grado?
- ¿Qué son las ecuaciones de primer grado?
- ¿Qué es una ecuación de segundo grado y sus elementos?
Ecuación de primer grado
Una ecuación entera de primer grado o ecuación lineal es una igualdad que involucra una o más variables a la primera potencia y no contiene productos entre las variables, es decir, una ecuación que involucra solamente sumas y restas de una variable a la primera potencia.
En general para resolver una ecuación de primer grado debemos seguir los siguientes pasos:
- 1 Quitar paréntesis.
- 2 Quitar denominadores.
- 3 Agrupar los términos en.
- 4 Reducir los términos semejantes.
- 5Despejar la incógnita.
- 1 Quitamos paréntesis.
- 2 Agrupamos los términos en.
- 3 Reducimos los términos semejantes.
¿Qué es una ecuación de primer grado y de segundo?
Regla del producto: si multiplicamos o dividimos los dos miembros de una ecuación por un número distinto de cero, se obtiene una ecuación equivalente. Ecuación de primer grado: ax = b. Ecuación de segundo grado: ax2 + bx + c = 0, siendo a, b y c números reales y a ≠ 0.
¿Qué es una ecuación de primer grado con una incógnita?
Una ecuación de primer grado con una incógnita es aquella que tiene solo un término desconocido el cual tiene grado 1. Resolver una ecuación consiste en determinar el valor de la incógnita que hace verdadera la igualdad. Esto significa despejar la incógnita que es dejarla sola en un miembro de la igualdad.
Cómo se resuelve una ecuación de primer grado
¿Qué son ecuaciones y 5 ejemplos?
Se denomina ecuación a una igualdad matemática entre dos expresiones algebraicas en las cuales aparecen valores conocidos y otros desconocidos. Por ejemplo: x + 7 = 32.
¿Cuáles son los 3 tipos de ecuaciones?
Tipos de ecuaciones
- De primer grado o lineales.
- De segundo grado o cuadráticas.
- De tercer grado o cúbicas.
- Diofánticas o diofantinas.
- Racionales, aquellas en las que uno o ambos miembros se expresan como un cociente de polinomios.
¿Qué tipos de ecuaciones hay ejemplos?
En matemáticas diferenciamos varios tipos de ecuaciones: de primer, segundo y tercer grado, bicuadradas, algebraicas, irracionales, racionales, etc.
¿Cómo se resuelve la ecuación?
Para resolver una ecuación hay que simplificarla. Para ello hay que situar todos los términos con incógnita en un miembro de la ecuación y todos los términos sin incógnitas en el otro miembro. Luego debes despejar la incógnita realizando la operación que corresponda.
¿Cómo se resuelve una ecuación de una incógnita de primer grado?
Resolver ecuaciones de primer grado con una incógnita
- Agrupan los términos semejantes. Es decir, proceder a pasar los términos que contengan variables al lado izquierdo de la expresión y las constantes al lado derecho de la expresión.
- Finalmente, se procede a despejar la incógnita.
¿Qué son las ecuaciones de primer grado?
Una ecuación de primer grado o líneal o ecuación lineal es una igualdad que involucra una o más variables a la primera potencia y no contiene productos entre las variables, es decir, una ecuación que involucra solamente sumas y restas de una variable a la primera potencia.
¿Qué es una ecuación de segundo grado y sus elementos?
Ecuación de segundo grado. Son ecuaciones de segundo grado aquellas en las que la incógnita aparece al menos una vez elevada al cuadrado (x2 ). Por ejemplo: 3x2 – 3x = x – 1. Pasemos al primer miembro de la ecuación todos los términos de forma que en el segundo miembro quede 0.